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1. Introduction

Wayvelets are functions generated from one basis function by dilations and
translations. Wavelet concepts have unfolded their full computational
efficiency mainly in harmonic analysis (for the study of Calderon-Zygmund
operators) and in signal analysis. The wavelet expansions induce isomorphisms
between function and sequence spaces. It means that certain Sobolev or
Besov norms of functions are equivalent to weighted sequence norms for the
coecients in their wavelet expansions. The wavelets have cancellation
properties that are usually expressed in terms of vanishing polynomial
moments. The combination of the two previous properties of wavelets provides
a rigorous analysis of adaptative schemes for elliptic problems. Moreover,
nonlinear approximation is an important concept related to adaptative
approximation. The standard technique in physical geodesy is based on an
expansion of the investigated functions which are in general homogeneous
harmonic polynomials. This technique has obvious disadvantages because
the most essential drawback is the global support of the basis. By using
wavelets with compact support, we obtain a highly localized resolution by
increasing the maximum degree of the truncated singular value decomposition
to extreme sizes. Moreover, they are applied to numerical problems.
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We construct in this paper three types of wavelets. We build in the first
case scaling functions and associated wavelets which are fast decreasing. In
the second case, we construct wavelets which are exponential decreasing. In
the last one, we construct scaling functions which are regular and have
compact support. There is a relation between regularity and the support.
The scaling function is constructed in an elementary way. The main
contribution offered in this paper which diers from the other constructions
is the realization of global higher regularity by more elementary techniques
than perhaps those involved in (Ajmi et Al (2001), Dahmen (2000) and
Jouini (2007)). The global regularity is sucient for applications and the
bases are easy to implement. The direct method used in this paper constitutes
a very important method for the study of many problems of mathematics
and physics because we give a good description of scaling functions and
associated wavelets specially in the case of compact support. Wavelets
described in this work have many applications as computation and numerical
simulation for elliptic problems or image processing.

Section 2 is devoted to the construction of three types of scaling functions
which will be useful for the remainder of the work.

In section 3, we describe an algorithm of construction of the three types
of associated wavelets. These constructions are not complicated and not
technical because the scaling functions are constructed in an elementary
way. In particular, general wavelet bases with higher regularity and compact
support are given in this topic.

In the last Section, to apply algorithms, we characterize regular spaces
namely Sobolev spaces in terms of discrete norm equivalences.

2. Construction of the Scaling Function

We begin with the notion of multiresolution analysis introduced by Mallat
(1989) and associated properties that are essential in the proofs of our
results.

Definition 2.1

A multiresolution analysis is a family (Vj)jez of closed linear subspaces of
L*(R) such that:
i) V.V, forevery jeZ.

J+17

ii) flz) € V,ifonly if f(2z) € V.

AV, ={0} and }EJZV]- is dense in L*(R):

iil) SR

iv) flz) € V,if only if flx — k) € V; for every k € Z
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v) There exists a function g(z) in V| such that the system of functions (g(z
— k)),_, forms a Riesz basis of V.
Let P]. be the orthogonal projector from L*(R) onto V] Then, we have

im ], =0 Jim -1, =0

j—>—o J—+o

Definition 2.2
i) A multiresolution analysis is regular if there exists a constant C such
that for every integer m and for every z € R, we have the following
property:
l9(2)| < C(1 + |z[)™ (2.1)
ii) A multiresolution analysis is rregular, if the scaling function g(z) and
its first r derivations satisfy the property (i).
We have the following result.
Lemma 2.1 Let (g(z— k)),_, be a Riesz basis of V such that the function
g is r-regular. Let ¢ be the function dened by

1
~ = 2y
PE) (2, |98 +2kn)[") 2 (2.2)
then the system of functions ¢(z — k); k& € Z; form an orthonormal basis of
V_and the scaling function ¢ is r-regular.
Proof. We must prove that the scaling function ¢ is rregular because
the orthogonality is immediate. The function g is rregular, the function

z |§(§ + 2k7t)|2 belongs to L*([0, 2x]) and is 2n-periodic. Then, ¢ € VIt

is clear that we have
~ 2
Z. . |pE+2kn)| =1.
We first prove that if we write

F(&) =3 ae",

(eZ

then a, is fast decaying if and only if F'is of class C'*: In fact, we have

]_ 2n it
a[% : F(&)e"dg

and if £ # 0, by using integration, we get, for all &,

(-)F FO )

fk

Sup§5|0>2n|
Ek

;P e <

8| =

2n
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Then, if F'is of class C”, we get that a, is fast decaying. On the other
hand, if g, is fast decaying, then the function X,_,a, €= and all its derivatives
are uniformly convergent and then F'is of class C*. We denote

2 lae+2kn) =3 ae. (2.3)

keZ (eZ

Then, we have

1 2n R %
a, = %L é|g(§+2kn)| e edk,

1
-2

= [ g(@)g(a + D)da

If g is fast decaying, then the coecient a‘ is fast decaying. We deduce

G edz

that the series ZkEZ|§(E_, + 2kn)|2 is ¢ and (ZkeZ|g(§ + 2]€TC)|2 )71/2 is ¢ If
» 2 -1/2 itg
we write (Zkez|g(§+2k7‘)| ) = ZKEZ b,e™ where (b,), are coefficients of
(

. 2\-1/2
Fourier of (Zkez|g(<‘; + 2k)| ) , then (b,), are fast decaying and ¢ is also

fast decaying. We get
o(z) =Y bg(z - 0). (2.4)
(eZ

We verify immediately that the derivatives of ¢ are also fast decaying;
then we have

oM (z) = Z b,g(z - 0).
(eZ
Lemma 2.1 is completely proved.

We recall that a function g is exponentially decaying if there exist two
positive constants A and B such that for every € R, we have

|9(z) < A exp(-B| z|)
We prove now the following result.

Proposition 2.1 We assume that the function gis exponentially decaying.
Then, there exist two positive constants C' and D such that

lo(z)| < Cexp(-D | ).
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We first prove the following technical lemma.
Lemma 2.2 Let m(§) = Z,_,a,
i) mis analytic in the band | Im§ | < A.

ii) Thereexist two positive constants B and C'such that for every k € Z, we
have a, < Cexp(-B | k) for all B < A.

Proof.

Tt is clear that the function m is still 2n-periodic because if m(§ + 2x) —
m(&) vanishes on [0, 27, it vanishes on all the band and we have for & > 0:

e*. The two properties are equivalent:

1 27

a, =—
Fooogdo

m(g)e

_L(
21

m(§) is 2n-periodic, the first and the third term vanished. We estimate
the second term by the following expression:

[ m(e ag + [T mge Rag + [T m(e)e *ag)

o

2 sup |m(g)e .

&e[—iB, iB+2m|

We have the same result for £ < 0 by replacing —iB by ¢B. The second
implication is immediate. In fact, if g is exponential decaying, the series

z keZ

on [0, 27, the inverse function is still analytic on a band around the real
axis.

g(& + 2kﬂ?)|2 is analytic on the band. This function is strictly positive

Proof of Proposition 2.1. By using Lemma 2.2, we deduce that the
coefficients b, defined on 2.4 are exponentially decaying, and then ¢ is also
exponentially decaying. Proposition 2.1 is completely proved.

Lemma 2.3 We assume that the functions (¢(z — k)),_, form an
orthonormal basis of V, and f €V, Then, there exists a function m(&§)
satisfying

1(&) = m(&)o(E)
and such that m(&) is 2n-periodic and belongs to L*([0; 2n]).
Proof. We start from the equality

f(iC) = zkeZal@(xi k)
then

JE) = (Z, 40" )0(E)
Let



16 ABDELLATIF JOUINI

m(a) = EkeZakciiké

then we obtain

(&) = m(&)o(8)
Tt is clear that m(§) is 2n—periodic. By using the fact that the functions

(¢(x— k)),, form an orthonormal basis of V, and the Plancherel formula,
we obtain

171l = (€)Y

1

- = ([ e fote )

2k+1)z

-7 (T ey

a(or dajm

- ﬁ(i [} m(@) (e + 2km) d&,jl/z

- ([ et )

because Y |p& + 2kn* = 1. Then m(€) belongs to L*([0, 27]). Lemma 2.3
is proved.
Remark 2.1 In wavelet theory, the function m(§) is called filter.

We study now the relation between the filter m(€) and the support of
the scaling function.

Proposition 2.2 We assume that the functions (¢(z — %)), , form an
orthonormal basis of V, and m (§) = X, , ™ the filter satisfying

#(2%) = m, (2)o(&) . Then N

i) If ¢ has a compact support, then the coefficients o, are equal to zero
except a finite number of indexes k.

ii) In particular m (&) is a trigonometric polynomial.
Proof. Since V < V, we write
1 (x
_(P(_) = Zak([)(iﬁ - k)7
2 2 keZ

where
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a, = %Ej((p(g) — oz + k)) dz.
Then
®(28) = (z erfiki)fli%%

keZ

and

mo(&) = Z akeizk:a'

keZ

If ¢ has a compact support in [-A; A], then the expression of o, becomes

a, = %J.:_i ((p(g)o -z + k)) dz

T
We verify that for |k| > 34; we have a, = 0 because SUP(P(E) c [-24,
2A]. We have then the property (i) of Proposition 2.2. (ii) is immediate.

Proposition 2.3 Let m (&) = ANZV] o, " be a trigonometric polynomial

satisfying m, (0) = 1. Then the product H;mo(?’j&) converges simply on
R. Moreover, the convergence is uniform on every compact.

Proof. We have

[m, (&) -1] =

NZ

<5
z oce "1
k=N,

N,

N2
E a e ™ - E o
) k
k:Nl

k=N.

1




18 ABDELLATIF JOUINI

then

N,
< 22 ’ock| sin (ﬂ)‘
k=N, 2

Since log(|m (27€)]) is equivalent at infinity to [m (27€) — 1|, it is sufficient
then to prove that z ; ’mo 27¢) - 1’ converges simply on R and uniformly
on every compact. By using the equality described above, we have

Im,(27€) — 1| < C27 [
and

iQﬂ —

J=1

then, z ;c:l ‘mo(Tj%) = 1| converges simply on R. We assume now that |§| <
B, we obtain

SUpp Im (27€) — 1| < CB27,
then

z Pl Supy Imo @ig)— 1| < oo

We deduce that Z ?:1 |ma (27E) - 1| converges uniformly on [-B; B| and
then on every compact.

We have precisely the following result which characterizes the scaling
function defined by the infinite product.

Proposition 2.4 Let m,(§) = Z ,J:ENI ake_lké be a trigonometric polynomial
function such that m (0) = 1 and |m ()" + |m (§ + n)]> = 1. Then the

infinite product H;mo (27 €) is an entire function of exponential type.

Remark 2.2 The innite product Hf:1m0(2’j§) is an entire function of
exponential type and is the Fourier transform of a distribution with compact
support in [N; N2[:

We need in the remainder of this work the following known lemma.

Lemma 2.4 (Lemma of F. Riesz) Let A(E) a positive trigonometric
polynomial invariant by the transformation & — —&. Then, there exists a
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trigonometric polynomial B(E) of degree M (B(a) = Z M obae™ b, € R) such
that BE)P = A(®):
Corollary 2.1 There exists a trigonometric polynomial m (&) satisfying
the following properties:
m,(0) =1
m (&) + Im (& + )P = 1

m@ -2 5,

where L(&) is a trigonometric polynomial and N an non-null integer.

Remark 2.3 The scaling function ¢ defined by
®&) =[]m, 278,
j=1

belongs to L*(R). The last point is to realize orthogonality of the sequence
((p(l’ B k))kez'
Proposition 2.5 Let Jimo be a trigonometric polynomial satisfying the
following properties:
m,(0) =1

Im,(E)FF + m,(& + M)l = 1;

1+e ™

m@ -2 5,

Let ¢ be the function of I?(R) defined by:

#(&) = [Tm,(27%).
j=1
If we denote B = sup,_,|L(§)|, then, we have:

PE) < C+g)

Proof. There exists a constant ¢ such that

¢(§)| <1l+clf < exp™

N+logB
log 2

then

#6) < TTexp2cfe)
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< exp(c|§| > 2])
=1
< exp(c[g])-
For || <1; there exists a constant C” such that

lp(e)| < ¢’
then

¢’(§)| <C'(1+ |§|)-N+log3/1og2_

For || > 1; we have

e
m,(278) = L27g),
or
L+ e8| =2 ’(:08(2”"1 §|
then
ioie |V
1+e |COS(27]7] &) N
On the other hand, we have
S e
== =1

- (H Jcos(2* a>|jN

= ﬁ cos(277'E) i
sin é '
_ 2
4
2

then
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We deduce that for [§| > 1; there exists j € N such that
Wit < |E| < 20

or again
logle] _ . _,, loslg
log2 °° log2
Then
0 Jo
[Tee7e) =[[Tre e [T tee
j=1 J=1 J=j,+1
Since

[T tee=T]re" "9

_HL 2]]@

therefore, for |27%&| < 1, there exists a constant C'such that

< cte

and

0

[1L279

j=1

< B* =exp(j, log B)

< exp[logB +log B log|§|j
log 2

log B logB

< exp(log|§| log2 ) = Bg|oe2

log B

B+ g

21
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then
e log B
H 277E)| < cte(l+|g])e2.
j=1
Or
sin é
2| < cle
S| 1+
2
therefore
1né
F 2| < cte(1 + &)™
2
and then
—N+
() < O+ fg) e

Proposition 2.5 is proved.
Proposition 2.6 We assume that mo satisfies the hypotheses of Proposition
2.5. Then we have

N+ log B
@ (&) < O+ =

where C'is a constant independent of n.
Proof. We have

©| = [Tl @ ok, 278

n |y e [N v
T evel,,e7
n e |1V .
(i e st eos
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then

@) - [ﬁcos@“ aﬂ [TLe ey @ o

j=1

Since

n g n+1 i sin (%)
g COS(2 EJ) = :!:!: COS(2 a) = m

For — < 2€ <7, we have

2—n71 < E
e < 3
then
z -n-1 2 -n-1
‘sm(? ?‘;)’ > =2 ‘E_,‘
B
therefore
1 2"
—_— 27"E) <
|sin(27"71§)| XH’K]( 2 |§|
and
P - L & [
’28111(2’"’1&)‘ X[’"’“]( 2 T _é
2

< cte(1 + [g)™
To prove the Proposition 2.6, it is sufficient to prove that

log B

[le el . 9 <ca g

We have L(0) = 1: Then, by using Lemma 2.2, we get
|L(E)] <1 + <] < exp(c[g])
then

f[|L(2’f§)| £ f[exp(cw 1))

23
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< exp(z2j |€j,]j
J=1

< exp (ci g |§])
=

< exp(cl§|)
Then, for [§| <=, the product II7_ 27 |L(27j E_})| is uniformly bounded. We
deduce that there exists ¢ > 0 such that

ﬁ|L(2’f§)| <c

and then, for |§| <n, we have

log B

ﬁIL(Tj &) < el + [g])lee?

We study now the case |§| > . There exists j € N such that
2o < |E| < 2otIm.
We remark two cases.

i) If j > n; we have

it > 2"
then
|&] > 2'n
and therefore
X[ﬂ)n](Qing) =0

and the needed property is satisfied.

ii) If j <n, we have

[Tl o) =TTl ol 1 e e

J=Jot+l

then

[T l2e78)] = [T exp(e2” )

J=7,+1 J=#
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< exp[c i 2 |§|)

J=J,+1
we obtain
ﬁ |L(2’f é’;)‘ < eXp[i 9k |2(;‘0+1)§|J
J=J,+1 =
< exp(2¢|27UotDE|)

<exp(c|é|).
On the other hand, we have

ﬁ’L(Q’j &)< B*

then, for 2 < |&|, we have
log © + j, log2 <log |
S0

r log|§| _logm
7 log2 log2

and then

v 1
B" = exp(j, log B) < exp Hiﬁl 1Ogn)log B}

log2 - log 2

o exp[10g|§| logBjeX (_ log mlog B)

log2 log 2

log B
< cteexp (log |&[1oz2 )

log B
< cte|g[e2

logB
< cte(1 + |g|) =2
We get

log B

Vg2 ﬁ|L(2”' £, (2"E) < cte(l +|g]) e

J=1

25
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Proposition 2.6 is proved.
Proposition 2.7 We use hypotheses of Proposition 2.6 and we assume
1
that B <2" 2. Then, 4, converges to ¢ in the sense of I2(R):
Proof. We have 1, converges simply to ¢. Then, |12n - (p’? tends to O:

Using Propositions 2.5 and 2.6, we have

n-1 1
B<2 2=logB< N—5 log 2

= _oN +2288
log 2
—2N+M
= (1+]g) kg2 ¢ [}(R).

u, (&) - (P@)F d§ tends to

Dominated convergence theorem gives that f,

3. Construction of the associated wavelet

For 5 € Z, we denote by VVJ the orthogonal complement of V] in Vj+1' It is
clear that we have

i) Fe W ifonly if F(Q—])EWO

ii) Fe W, if only if F(—Q—])EWJ

iii) The spaces W. are orthogonal and we have @ W. = L*(R).
J J 7

Proposition 3.1 We assume that the function ¢ is fast decaying. Then,
there exists a function y such that

i) The functions (y(z— k)),_, form an orthonormal basis of W .

ii) The functions (2/°y(2'z - k)),_, form an orthonormal basis of W.

iii) The functions (2/*y(2z ~ k)),_, form an orthonormal basis of L,(R).
Proof. The function ¢ belongs to V. Then, we have

T
(p(E) eV, cV,.
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Then there exists a sequence (a,), , such that

1 (&
5@(5) = Zkezak(p(a: +k)

where

o, = %IRQG)@(QU T R)da

27

The function ¢ is fast decaying, then the sequence (a),_, is fast decaying.

By using Fourier transformations, we obtain (3.1)

#(28) = m, (&)(8)

where

ma(é) - ZkeZakcl

‘We have
2 |[6(E +2km)] =1,
then
& 2
%, |0(20€ + 2km)|” =1,

it gives

> m, (& + km)f ag + k) =1

keZ

We divide the series in two parts, we get

keZ
it gives
[m (&) + [m (& + m)P = 1.
1

2 |m, @) [o(& + 26w + 3 |m, (& + )" [o(5 + 2k

3.1

(3.2)

. (T
The functions (ﬁ ¢ (5 - k)) form an orthonormal basis of V. Then
keZ

we have

Vg = {m(2E)p(2E), m is 2n — periodic and locally in L*(R)}

= {m(2&)m, (&)p(§), m is 2n — periodic and locally in L*(R)}

Then
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V= {m(28)p(2&), m is 21 — periodic and locally in L*(R)}
and the application F'— m is an isometry from V_ onto L*([0.2n]).

To construct a basis of the space [y_,, we look for a filter £(&) which is

2n periodic and orthogonal to functions m(2&)m (&) where m is a function
27n-periodic. This condition is expressed as

[ m(o2m, (@7 = 0.
[ m(28) (m, (&)IE)E + m, (& + W& + mE = 0.
We get

m, (§)L(EME + m, (& + m)((§ + m)d
The last condition is satisfied if there exists a function 6(§) such that
(&) =0(&)my (& +m);

VE €0, 7],
O e 1 m) = o0m®

and then, if 0(§) = ¢, we must find a n-periodic function p such that
(&) = w(E)e “my (& + m).
We take as a basis of W_i the functions
V2e B m (& + mp(E)e*™, k e Z

By dilation, it gives a choice for the function y

¥(E) = e m, 241 ik /2) (33)

y(z) = > (-1) o 02z — k).

keZ

Remark 3.1 If ¢ is fast decaying, ¢ has the same property and if ¢ is
exponential decaying, ¢ is also exponential decaying.

Proposition 3.2 If the functions (2/°y(2'z - )) ,_, form an orthonormal
basis of I*(R) and y and the r derivatives are fast decaying, we have
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VI J.Rx[\y(x)dx =0.

Proof. We use the recurrence method on r. For r = 1, we have { = 0.
But

[ w(@)dz = (0).

Or

| = 1; then the property (3.3) gives

W(0) = my(m)
On the other hand, we have
o&) =[]m (—E’)
. o\ 9/
720

then, |m (0)] = 1 and the property (3.2) gives m (1) = 0. We assume that
the result is true for all £ < r— 1. Let 2, = k2 such that y(r)(z) # 0. Let
Jj= Jand k= 2’z The orthogonality of the wavelets and the Taylor-Young
formula give:

0= IR ()2 P y(2'z - k)dz

(Z)(a:a) +(z—z,)™" O(l))QJ/QW(ij —k)dz

E

The O(1) is uniform on R. We divide the integral into two terms and by
using a change of variables u = 2j(z - 2 ), we obtain

0= CE o pty(a -0 )
+I z,) 02 P y(2'x —,))dw

A CAPS T [ wrw(wydu + olalih)

r!
_¥"a) (|x0) [, ww(wdu+0(27)

For a big j, we deduce
_[R u"y(u)du =0

Proposition 3.2 is completely proved.
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Remark 3.2

i) This property means that the function \y has zero of order equal or
bigger than (r— 1) at 0.

ii) The wavelets on multidimensional case can be constructed from the
wavelets on dimension one by using the tensor product (Jouini (1993);

Jouini et Al (1992)) and then they satisfy the same properties described
above.

We describe the algorithm of construction of orthogonal multire solution
analysis with compact support. We denote
- k k
Py)=2 O,y N eN*.

k=0

We choose an odd polynomial R and we define the polynomial P by

Py(y)=Py(y) + y”R(% - y)

with the properties:

vl
Vy = PN(y)+y“R(§—y)

and
= {f} (y)+y"R G - yﬂ = sup P(y) < 2

We denote

L(g) = P(Sin2 %j

L is a positive polynomial. The Riesz lemma proves that there exists a
polynomial ¢ such that [((§)|? = L(€) and £(0) = 1.

We take now

m@ =2 o

Then, mo satisfies the conditions of Proposition 2.5 and we have:

sup((&) = [supw(a)Ff
eeR geR
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N | =

(0 1) = (i‘:gp(smg 3))
- (sup P}
(PP )5 _o"s

We obtain an orthogonal multiresolution analysis and an orthonormal
wavelet basis with compact support.

Remark 3.3 To construct the orthogonal multiresolution analysis of I.
Daubechies (1988), we use the method described in the previous section
with a particular choice of a null polynomial R. Then, we have:

P(y) = Py(y),
1e) = 7, (sin 2

sup P, (y) < 277,

&eR

and

(,l
sup|L, (8 <2 .

4. The Study of Regular Spaces

We prove in this section that the wavelet bases constructed in this paper are
adapted for the study of the spaces C*(R) and H*(R).

Definition 4.1

i) A function f belongs to C;D if there exists a polynomial P of degree
lower or equal to entire party of s such that
fl@) = P(x— =) + O]z - z|).
i) fe C(R)if fe C; for every z € R and if O(z) is uniform in z .

Theorem 4.1 We assume that s € R/N, the wavelet y is C**! and has
zero first moments. If we denote

C, = f@w, (@),
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then, we have the following equivalence

fe C(R)ifonly if |O) | < Cz’@“’l_

Proof. If f € C*, we have

c,|= I, @, (2)dz)

J. (f(x) -P (93 - 2@)} v, (2)dz,

(because y has some vanishing moments and is fast decaying)
then

1
‘cvk’SC’J. |z — k2] v22d:v e
i R 1+2' |z —k27))

i . s
<oplEhp rdy_
J E(L+y)"

n :
< 02’[5”)]
Reciprocally, we assume that
1
C, < oz b3}
gk
We denote
We have

fo.s). =2

and

@), < 02

(due to the localization property of y).
Let z, € R. We denote

Pa-g,)= Y% g0,

= al
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and

Pe-g,)=Y P(a-u,)

>0
This series converges. Then if j is such that
27 S|z —gz,| <27
we have

|f(z) - P(z - =,)

<Y |0,(N@ - Pa-x,)

J<d,

+ 2|0, (N@) - Pa-z,)
7>Js
The first sum is increased by

z |z — x| sup 6an(f)”w < C’Z |z — x|+ 9lel-e+1);
9=35

i<3, lod=Isl+1

The second sum is increased by

cT (o, + X -ar

< CZ (2’” + Z |z -z, 2’“"”)

J>Js a<ls|

Qﬁ“)(f)Hw)

e Clz—a |
Proposition 4.1 If f € H*(R)(s > 0), then we have the following inequality

If= PO, < R |1l -
Proof. If f € H*(R); we have the inequality

(G 22y <Ol
ik
Then

|7 =2, = 2]

<2773 (1 +22f)‘0.k f
j>J 3k)
<2 ||f[l -

Proposition 4.1 is then proved.

The characterization of H*(R) is immediate. We can now establish the
following result.
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Theorem 4.2 Assume that ¢ is a C**! -function, then we have

i) for fe IXR), |fl, ~ R/, +(Z]-20 Q, f”z)a

ii) For (s > 0), we have

QI <=

fe H(R) if only if Pf e I’(R) and 2;4”
72

5. Conclusion

In this paper, we described algorithms adapted for construction of general
scaling function and associated wavelet. These functions are regular and
have compact support. Then, we constructed multiresolution analyses. As

applications, we proved that these analyses are well adapted for the study of
the spaces C(R) and H*(R).
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